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Experimental quantification of 
pollen with DNA metabarcoding 
using ITS1 and trnL
Sandra Baksay   1*, André Pornon1, Monique Burrus1, Jérôme Mariette2, Christophe Andalo1 
& Nathalie Escaravage1

Although the use of metabarcoding to identify taxa in DNA mixtures is widely approved, its reliability 
in quantifying taxon abundance is still the subject of debate. In this study we investigated the 
relationships between the amount of pollen grains in mock solutions and the abundance of high-
throughput sequence reads and how the relationship was affected by the pollen counting methodology, 
the number of PCR cycles, the type of markers and plant species whose pollen grains have different 
characteristics. We found a significant positive relationship between the number of DNA sequences 
and the number of pollen grains in the mock solutions. However, better relationships were obtained 
with light microscopy as a pollen grain counting method compared with flow cytometry, with the 
chloroplastic trnL marker compared with ribosomal ITS1 and with 30 when compared with 25 or 35 PCR 
cycles. We provide a list of recommendations to improve pollen quantification.

Environmental DNA metabarcoding is a molecular method that consists of investigating environmental DNA 
samples made of complex mixtures of genomes from numerous organisms1. Due to new sequencing technologies 
and bioinformatics tools, metabarcoding has been increasingly used to identify taxa in environmental samples1 
to monitor biodiversity2–4, to investigate ecosystem functioning5 and interaction networks6–8, in both aquatic 
and terrestrial ecosystems. Nevertheless, its reliability in quantitative approaches, which depend on the match 
between counts of high-throughput sequence reads and the amount of sampled biological material2, is still the 
subject of debate9,10. While taxon identification can reveal individual diet breadth11, species richness, and the 
composition of habitats2, communities12 and ecological networks4, taxon quantification provides knowledge on 
species evenness in those habitats, communities and diets or on the level of individual or species specialization in 
networks, all of which is very useful in ecological studies. Research on pollination and knowledge of the quantities 
of pollen transported by pollinators allow for the estimation of plant-pollinator interaction strength and hence it 
gives a more realistic representations of networks than those made possible using traditional approaches such as 
observing visits to plants by pollinators9,13.

Metabarcoding has been used in pollen studies to identify pollen in honey14–16, insect loads6–8,17, insect nests18, 
airborne samples19, and to quantify pollen abundance across various sample types. Several studies found sig-
nificant positive relationships between pollen abundance (estimated using light microscopy) or pollen DNA 
quantities, and the abundance or the frequencies of high-throughput sequencing reads in experimental sam-
ples10,16,17,20,21, airborne samples22,23, insect pollen loads21,24–27 or in brood cells of solitary bees28. Conversely, other 
studies found low or no significant pollen-sequence abundance relationships when using ITS2 markers applied to 
pollen provision in bee corbicula containing huge amounts of pollen17,21.

Many factors associated with handling samples, technical processes, or the biological material itself can affect 
the accuracy of metabarcoding quantification. Some factors, related to pollen (size, structure), species DNA (gene 
copy number) and the characteristics of DNA markers (nuclear vs plastid), cannot be corrected whereas it may 
be possible to reduce the impact of others. Establishing relationships between pollen quantity and DNA sequence 
abundance requires accurate estimates of the concentration of pollen in the samples used for DNA extraction. 
However, pollen concentration measurements made using light microscopy, and pollen DNA isolation are usu-
ally performed on different subsamples which possibly result in differences in pollen concentrations as a result 
of pipetting artefacts. In addition to the possible artefacts that occur during PCR and preparing sequencing, 
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these may cause significant variation among replicates and artificially affect the relationship between the con-
centration of pollen and sequence abundance. An alternative approach which, to our knowledge, has not yet 
been tested, is counting pollen grains in the DNA isolation pellets. Since at this stage of experimental process-
ing there is no longer a risk of DNA contamination in the laboratory, pollen counting could be automated and 
applied to the whole pollen population, rather than to a small fraction, as is the case in traditional methods using 
microscopy. However, post-PCR counting would preclude crushing pollen grains for DNA extraction, which, 
in any case, is not required for efficient DNA isolation20. Efforts are also needed to reduce the accumulation of 
spurious sequences, chimeras and Taq polymerase inhibitors, during PCR and sequencing processes29, which 
are expected to fluctuate with the genetic markers, the PCR and sequencing conditions21,30 and the reagents 
used. Many studies which investigated artificial26,30,31 or natural pollen mixtures17 used samples with huge pollen 
concentrations (from 30,000 to potentially more than 1,000,000 pollen grains) stored in a single bee corbicula30,31 
or several grams of pollen26,27. Such large quantities of pollen could release large amounts of DNA polymer-
ase inhibitors32 and cause PCR dysfunction. It would thus be useful to design experiments with lower pollen 
amounts, for instance, in the range of those involved in pollination, typically from a few to several thousand 
grains33,34. All these potential biases can be exponentially amplified during PCR, increasing the variability of the 
data set31, reducing the strength of statistical tests and affecting the relationship between pollen concentrations 
and sequence abundances.

We investigated relationships between the number of pollen grains and sequence counts abundance obtained 
by high-throughput sequencing, using two species (Chrysanthemum sp. - Asteraceae, and Hippeastrum sp. - 
Amaryllidaceae) of which the pollen has very different characteristics (size, exin structure, DNA content)35–39. We 
analysed two plant specific loci, the internal transcribed spacer region 1 (ITS1, ≈ 300 bp) of the nuclear ribosomal 
region, and the plastidial P6-loop of trnL (UAA) intron (≈75 bp), efficient for investigating potential degraded 
DNA, respectively, hereafter referred to as ITS1 and trnL. The loci were amplified using three different PCR con-
ditions (25, 30 and 35 cycles). The number of pollen grains in each subsample was estimated before DNA isolation 
using light microscopy. Moreover, as we demonstrated in previous work20 that the mechanical pollen disruption 
did not give higher DNA yield, we used flow cytometry to count uncrushed pollen grains in the extraction pellets 
after enzymatic DNA isolation. Our main objectives were to investigate, for pollen quantities in the range of insect 
pollen loads involved in plant pollination: (1) whether using flow cytometry on extracted solutions provides more 
accurate estimates of pollen grain abundance than light microscopy, and consequently, a stronger relationship 
between the number of pollen grains and sequence abundance; (2) how the relationship is affected by the number 
of PCR cycles, the type of markers and plant species with different pollen characteristics.

Results
Read scores of trnL and ITS1 amplifications.  We obtained 2,699,831 trnL reads (360 samples), of which 
56.68% were assigned to Hippeastrum sp. (HIP) and 43.32% to Chrysanthemum sp. (CHR). The total number of 
ITS1 reads (360 samples) reached 302,934, most of which (78.59%) were assigned to CHR.

The 25 PCR cycle amplification conditions produced relatively few trnL (on average, 98 and 19 reads for 
HIP and CHR, respectively) and ITS1 reads (on average, 14 and 169 sequences for HIP and CHR, respectively). 
Compared to 25 PCR cycles, the numbers of trnL sequences at 30 and at 35 PCR cycles were 23 and 235 multi-
plied in HIP and 65 and 954 multiplied in CHR, respectively. Compared to 25 PCR cycles, the number of ITS1 
sequences at 30 and 35 PCR cycles respectively, was multiplied by 24 and 56 in HIP and by 11 and 12 in CHR, 
respectively. Therefore, ITS1 amplification was lower than that of trnL and increased slightly with an increase in 
the number of PCR cycles.

Microscopy and cytometry pollen counts.  We found a highly significant positive relationship between 
the numbers of pollen grains estimated by microscopy and flow cytometry (Fig. 1). However, the relationship was 
clearly better for HIP (higher R2; line slope close to 1) than for CHR. Flow cytometry tended to detect fewer CHR 
pollen grains than microscopy, especially in samples with low pollen abundance (Fig. 1).

Relationships between DNA sequence abundance and pollen grain abundance estimated using 
light microscopy.  For both markers and regardless of the number of PCR cycles, ANCOVA linear model 
(lm) revealed highly significant positive relationships between the number of sequences and the number of pollen 
grains (Table 1; Fig. 2). However, the relationships (Fig. 2) were generally stronger (R2 always ≥ 0.70) and less 
variable for trnL (CHR: 0.89 ≤ R2 ≤ 0.94; HIP: 0.70 ≤ R2 ≤ 0.76) than for ITS1 (R2 generally ≤ 0.61; CHR: 0.38 
≤ R2 ≤ 0.87; HIP: 0.36 ≤ R2 ≤ 0.59). For trnL, the slope of the relationship ranged from 0.61 to 0.85, that is a 1 log 
increase in the number of pollen grains, a 0.61-to-0.85 log increase in sequence quantity (Fig. 1). For ITS1, the 
values were generally both lower and more variable (0.31 ≤ slope ≤ 0.87) across PCR conditions and species. The 
two plant species had very similar (trnL) or quite similar slopes (ITS1), except HIP at PCR35 for ITS1, which had 
a steeper slope than CHR.

There was also a significant species effect in each PCR cycle for ITS1 but only at PCR25 for trnL (Table 1). 
Namely, CHR had slightly fewer trnL sequences at PCR25 but many more ITS1 sequences than HIP in all PCR 
cycles (Fig. 2). The two plant species had very similar (trnL) or quite similar pollen-sequence relationship slopes 
(ITS1), except HIP at PCR35 for ITS1 which had a steeper slope than CHR. Overall, there was no pollen quan-
tity–plant species interaction, except for ITS1 at PCR35.

Finally, while the number of trnL sequences tended to steadily increase with increasing PCR cycles (Fig. 2), 
the number of ITS1 hardly increased between PCR30 and PCR35. Thus, the amplification efficiency of ITS1 
decreased with the number of PCR cycles, however, without fundamentally altering the relationships between 
pollen and sequence abundances.
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Relationships between DNA sequence abundance and pollen grain abundance estimated using 
flow cytometry.  The ANCOVA linear model highlighted very similar trends in the relationship as micro-
copy estimates (Table 1; Fig. 3) i.e.: (i) a strong significant effect of the number of pollen grains on the number of 
ITS1 and trnL sequences; (ii) a species effect, mostly for ITS1; (iii) generally no pollen grain x plant species inter-
actions, and (iv) less variability in R2 and slope for trnL than for ITS1. On the other hand, flow cytometry pollen 
estimates gave weaker predictions (lower R2 and line slopes) of trnL sequence quantities, thus showing that flow 
cytometry was generally less efficient than microscopy in counting pollen grains.

Figure 1.  Relationships between the number of pollen grains in Hippeastrum sp. (red lines) and in 
Chrysanthemum sp. (black lines) estimated by microscopy and by flow cytometry.

Source of variation

PCR25 PCR30 PCR35

Sum sq Df F value Sum sq Df F value Sum sq Df F value

Counting using microcopy

ITS1

Plant species 15.51 1 102.30*** 16.19 1 48.00*** 7.10 1 31.20***

Pollen quantity (log) 5.82 1 38.39*** 8.22 1 24.37*** 8.41 1 36.99****

Plant species x Pollen 
quantity 0.04 1 0.29 ns 0.60 1 1.79 ns 1.88 1 8.25**

Residuals 5.30 35 0.34 36 8.19 36

trnL

Plant species 2.60 1 24.12*** 0.20 1 2.07 ns 0.21 1 2.96 ns

Pollen quantity (log) 17.31 1 160.95*** 16.60 1 168.57*** 9.84 1 138.26***

Plant species x Pollen 
quantity 0.03 1 0.29 ns 0.01 1 0.06 ns 0.03 1 0.36 ns

Residuals 3.87 36 3.55 36 2.56 36

Counting using flow cytometry

ITS1

Plant species 15.51 1 90.47*** 16.19 1 39.10*** 7.10 1 25.61***

Pollen quantity (log) 4.79 1 27.94*** 5.26 1 12.71** 6.38 1 23.00***

Plant species x Pollen 
quantity 0.38 1 2.19 ns 0.80 1 1.94 ns 2.12 1 7.67**

Residuals 6.00 35 14.91 36 9.98 36

trnL

Plant species 2.29 1 8.83** 0.18 1 0.67 ns 0.23 1 1.47 ns

Pollen quantity (log) 8.76 1 33.81*** 8.27 1 31.28*** 5.33 1 33.78***

Plant species x Pollen 
quantity 0.86 1 3.33 ns 0.95 1 3.59 ns 0.42 1 2.68 ns

Residuals 7.77 30 7.93 30 4.73 30

Table 1.  ANCOVA model of the effects of plant species (HIP or CHR) and pollen quantity (log transformed) 
counted using light microscopy or flow cytometry on the quantity of ITS1 and trnL reads obtained with 25, 30 or 35 
PCR amplification conditions (PCR25; PCR30, PCR35 respectively). ns: not significant; **P <0.01; ***P <0.001.
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Discussion
In this study, we investigated whether it is possible to predict the abundance of DNA sequencing reads from the 
quantities of pollen grains and if so, how accurately, and how the prediction is affected by the methodology used 
to estimate pollen abundances in mock solutions, PCR conditions, plant species and the type of markers (nuclear 
versus plastid). In agreement with previous studies20–22,25,40 but in contrast to others17,26,30,31, we found a signif-
icant, and often strong positive relationship between the number of DNA sequences and the number of pollen 
grains in the mock solutions. However, the strength of the relationship was influenced by the pollen counting 
methodology, the marker, the species and the number of PCR cycles.

Efficiency of microscopy vs flow cytometry in counting pollen grains.  Usually, in experiments 
which aim to evaluate the potential of metabarcoding for pollen quantification, the estimates of pollen abun-
dance in suspension and the DNA extractions have been performed using different subsamples17,20–22,25–27,30,31,40, 
resulting in unavoidable variation in pollen concentrations. Moreover, since counting pollen grains under a light 
microscope is very time consuming and as mock solutions often have high concentrations of pollen, only small 
subsamples and a small proportion of microscope slides (and consequently of pollen population) are usually 
inspected23. Such methodological problems may then be further amplified by PCR, thus blurring the relationship 
between sequence and pollen abundance. In an attempt to reduce these biases, in every pollen sample based on 
microscopy counting, we counted pollen after DNA isolation using flow cytometry. While DNA isolation and 
flow cytometry were performed on the same mock solution and since more than 80% of the stock solution was 
counted, we expected flow cytometry to provide the best estimates of pollen grain quantity, and therefore, the 
best sequence-pollen grain abundance relationships. Unexpectedly, stronger relationships were found using light 
microscopy, showing that it provided better estimates of pollen abundance than flow cytometry. Moreover, the 
efficiency of flow cytometry appeared highly species-dependant. Indeed, both microscopy and flow cytometry 
provided similar estimates of HIP pollen grain abundance, but flow cytometry largely underestimated the abun-
dance of the smaller CHR pollen grains, especially in the less concentrated mock solutions (50–250 grains). We 
observed that, despite the fact that pollen grains were not crushed before DNA extraction many CHR grains 
were in fact fragmented after DNA extraction. Fragments were then likely confused in spectrograms with the 
uncounted myriad of tiny biological and mineral particles present in the mock solutions. On the other hand, even 
though partially destroyed, the bigger pollen grains of HIP could still have been detected and counted. Moreover, 
due to the absence of lacunae and only one aperture, HIP pollen grains were possibly less sensitive to fragmenta-
tion than CHR pollen grains.

Figure 2.  Relationship between the number of trnL and ITS1 reads and the number of pollen grains (log 
transformed) in Hippeastrum sp. (red lines) and in Chrysanthemum sp. (black lines) estimated by light 
microscopy in three different PCR cycles.
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Effects of molecular markers and PCR conditions.  We found that for trnL, very accurate prediction of 
DNA read abundance was obtained from pollen grain quantities estimated by light microscopy, with determina-
tion coefficients and slopes generally higher than those found in the literature with the same markers40 or with 
other markers17,21,26,30,31. Moreover, except at PCR25, the good relationship was conserved across species and PCR 
cycles and trnL sequence abundance increased steadily with increasing PCR cycles. These positive results con-
firmed that: (i) light microscopy counting of pollen grains after DNA extraction was a suitable method to prepare 
mock solutions and replicates, (ii) trnL amplification was not subject to important PCR biases, and (iii) the degree 
of repeatability of high-throughput sequencing was high41.

The relationship between pollen–DNA sequence counts and ITS1 was also highly and positively significant, in the 
same range as that obtained by other authors20,27 but with less accuracy (lower determination coefficients and slopes) 
and higher variability across species and PCR conditions than with trnL. Although HIP has higher pollen DNA 
content42 than CHR36, it produced fewer ITS1 sequences than CHR, whereas both species produced similar quanti-
ties of trnL sequences regardless of the quantity of pollen and PCR conditions. Furthermore, in contrast to what we 
observed for trnL, ITS1 abundance did not increase steadily with the number of PCR cycles and remained almost 
stable between PCR30 and PCR35, although with a modification in the relationship between the pollen and sequence 
abundances. These results suggest that: (i) the amplification efficiency and copies of trnL in pollen from the two spe-
cies is comparable despite the fact that the number of plastids may vary across species43, (ii) HIP had fewer ITS1 cop-
ies in its nuclear genome, lower amplification or sequencing efficiency than CHR; (iii) the processes involved in these 
alternative causes would have been primarily influenced by DNA characteristics rather than by DNA quantities per se.

The observed differences between species, markers and PCR conditions could be related to the GC content 
in trnL and ITS1 sequences. Indeed, high GC contents can inhibit amplification44 due to primer mis-annealing, 
Taq DNA polymerase errors, gene mis-amplification and the synthesis of chimeras45. High GC-richness can also 
alter sequence reading during sequencing46. Analysing rDNA genes, Pinto & Raskin (2012) found that sequence 
counts were inversely proportional to the GC content of the samples (R = 0.78). We consistently observed that 
CHR had 60% GC in ITS1 and only 30% in trnL and that HIP had 10% more GC in ITS1 but only 1% more GC 
in trnL than CHR. Furthermore, amplification and sequencing using Illumina technologies are more effective for 
short DNA fragments and cause less variability in amplicon length than for longer fragments47. Together, the dif-
ference in GC-richness between markers and species and in sequence length probably explained the lower yield 
of ITS1 sequences compared to yields of trnL sequences in general and for HIP compared to CHR in particular, 
while both species had almost equal quantities of trnL sequences. Moreover, the accumulation of GC-induced 
inhibitors with PCR cycles32,45 is likely responsible for the fact that the number of ITS1 sequences did not increase 
beyond PCR30, a trend that was not observed in trnL.

Figure 3.  Relationship between the number of trnL and ITS1 reads and the number of pollen grains (log 
transformed) in Hippeastrum sp. (red lines) and in Chrysanthemum sp. (black lines) estimated by flow 
cytometry in three different PCR cycles.
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Recommendations and methodological considerations when using metabarcoding for pollen 
quantification.  Despite its high potential, we know only three other studies that (successfully) used trnL 
in pollen quantification20,22,40. Therefore, our findings call for further studies to determine whether trnL can be 
applied to many other plant species and routinely used to take greater account of interaction strength in pol-
lination network studies. Kraaijeveld et al., (2015) noted that trnL also had higher discriminatory power than 
other standard markers such as ITS, rbcL and matK. It is worth noting that, probably due to their relatively low 
GC content, plastid loci such as trnL20,22,40 (≈35% GC content), rbcL26,40 (≈42% GC content), matK (≈35% GC 
content) or trnT23,48 (≈25% GC content) may provide a better estimation of pollen number than nuclear markers 
(ITS1 and ITS2 ≈ 60% GC content). However, the drawbacks of ITS could to some extent be alleviated49 by using 
high-fidelity DNA polymerases such Phusion High-Fidelity DNA polymerase25,40 or Herculase II Fusion DNA 
polymerase (the present study), 3% (our study) or 5% DMSO50 and by applying low primer annealing tempera-
tures45. The detrimental impact of the accumulation of polymerase inhibitors could be reduced by increasing the 
number of PCR steps (3 to 5 successive PCRs) and by diluting a subsample of the previously obtained amplicons 
in fresh reagent mixtures at each step45. However, this method would be costly and time-consuming and not 
practical for high input studies.

Some experimental studies30,31 or studies whose goal was to understand patterns of floral resource use in 
bees analysed huge quantities of pollen21,40 sometimes corresponding to several pollen pellets. The resulting high 
DNA amounts could have led polymerase inhibitors to accumulate in solutions with increasingly negative conse-
quences for PCR amplification and thus explain the low correlation or the lack of a correlation between sequence 
counts and pollen quantities reported in some studies21,26,30,31.

With 30 PCR cycles, both trnL and ITS1 markers provided the highest relationship slope and the best 
sequence-to-pollen prediction (trnL) while the effects of plant species either alone (PCR25/trnL) or in interac-
tion with pollen amounts (PCR35/ITS1) were minimised. Moreover, for the low-pollen amount samples, PCR25 
had the disadvantage of producing few sequences, which could be confused with contamination and be removed 
from the data set by protocols designed to remove eDNA contamination (airborne pollen or non-pollen plant 
tissues deposited on insect bodies8). A dual-indexing strategy (dual-tagging PCR amplification and single-run 
sequencing) has sometimes been used to identify pollen by metabarcoding21,28,30,40, but this approach is not rec-
ommended for pollen quantification28, especially if the single–run sequencing involves multi-locus analysis. 
In practice, better quantification results have often been obtained with single-indexing PCR amplification and 
single-locus sequencing20,22,23,26,27,48.

To sum up, to improve pollen quantification, we recommend that: (1) unless special care has been taken to 
prevent pollen break out, to avoid using flow cytometry, or trying to perform flow cytometric counting before 
DNA extraction; (2) in the case of very high pollen abundances, as typical in bee corbicula, to either dilute sam-
ples to obtain solutions with a few thousand pollen grains or to use an alternative method such as PCR-free 
genome-skimming51; (3) to use a multi-locus approach including short plastid markers with low GC content, 
and (4) to use high-fidelity Taq DNA polymerases (such as Phusion High-Fidelity or Herculase II Fusion DNA 
polymerases), 3% or 5% DMSO, and a low primer annealing temperature to reduce some of ITS marker weak-
nesses; (5) to apply, at least for trnL and ITS1, a 30 cycle PCR; (6) to use single-locus sequence analysis rather than 
multi-locus sequencing; and finally, (7) to normalize the amplicon concentration before sequencing in order to 
reduce sequencing artefacts due to very different DNA amplicon concentrations27,52.

While we only investigated two plant species, additional studies are required to determine whether our find-
ings can be generalised to many other species. Moreover, we did not consider species mixtures. Some studies did 
not detect any pollen-mixture effect22 but others did. For instance, Bell et al. (2018) and Richardson et al. (2015) 
found under- or over-representation of some species in sequencing products compared to pollen populations esti-
mated using light microscopy. In studies using plant mixtures, an effect of species identity on the sequence-pollen 
DNA abundance correlation has been observed, but without deleting the sequence-pollen counts correlation20.

Furthermore, using ITS1 and trnL, Pornon et al.20 found highly significant positive correlations between the 
number of insect visits to plant species (more than 23 species in mixtures) and the number of their sequences in 
sequencing products. This occurred even though visits to flowers do not usually accurately reflect pollen trans-
port by insects53. So, we believe our findings are not an exception but that the question of pollen quantification in 
mixtures deserves further investigations that take all the recommendations we suggest here into account.

Material and methods
Plant models.  We investigated variation in the number of reads produced by 50, 250, 1,200, 6,000 pollen 
grains belonging to the ornamental cultivars, Hippeastrum sp. (HIP, Amaryllidaceae) and Chrysanthemum sp. 
(CHR, Asteraceae). We were unable to identify the species to which the plants belonged, likely because they were 
the products of many species and cultivar crossings (H. striatum, H. mandoni, H. papilio and C. dichroum, C. indi-
cum, C. chanetii, C. x morifolium). The plants were chosen because they are widely sold in gardening stores, they 
produce large amounts of pollen (for more details, see a previous study20) in winter when native species are not in 
flower and because their pollen has strikingly different characteristics. CHR has small (20 µm to 35 µm diameter), 
echinate pollen grains with a tectate ectoexine with large lacunae and three apertures38, and a 2 C value of 11.87 pg 
DNA36. HIP pollen grains are bigger (50 µm to 100 µm in diameter), with a semitectate ectoexine and one aper-
ture35. Their DNA content ranges between 2 C = 13.35 pg and 2 C = 17.09 pg42. These differences between and 
within species in pollen grain structure and DNA content may potentially influence the amount of DNA extracted 
and the number of sequencing reads produced by each pollen grain.

Pre- and post-extraction pollen counts.  Pollen stock solutions were obtained for each species by vig-
orously shaking fresh stamens in 10 mL sterilized tubes, kept sealed at 4 °C, then adding 3 mL of lysis buffer 
CF solution (Nucleospin Food Kit, Macherey-Nagel) to each tube and mixing thoroughly. The concentration of 
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pollen grains in each stock suspension was estimated (pre-extraction estimations) by counting pollen grains in 
10 μl (HIP) or 2 μl subsamples (CHR, due to the higher pollen abundance) under a light microscope, with seven 
replicates per stock suspension. Based on the known pollen concentration of the stock suspensions, we took sub-
samples of each species each containing 50, 250, 1,200, 6,000 pollen grains with five replicates (giving a total of 40 
mock solutions for the two species). After DNA extraction and isolation, we performed an additional pollen grain 
count (post-extraction estimations) of each mock solution using flow cytometry (CyFlowSpace Sysmex). As the 
samples with ITS1 and trnL are not the same, two batches of 40 pellets were counted for the two markers, contain-
ing respectively the two types and the four quantities of pollen. To prevent rapid pollen sedimentation, extraction 
pellets with empty pollen grains were re-suspended in 1 ml of 60% glycerol before counting using flow cytometry.

DNA extraction, PCR amplification and sequencing.  Total DNA extraction of mock solutions was per-
formed with the DNeasy Plant Mini kit (Qiagen) according to the protocol of Pornon et al.20. trnL and ITS1 markers 
were then amplified at 25, 30, 35 PCR cycles with three replicates per PCR cycle condition (giving a total of 720 PCR 
products, corresponding to five extraction samples for each quantity of pollen x 4 pollen quantities x 3 PCR condi-
tions x 3 PCR replicates x 2 plant species x 2 markers). For both trnL and ITS1 amplification, PCR reactions were 
performed in a 25 µl reaction volume containing 5 µl 5x Herculase II reaction Buffer, 25 mM each dNTP, 0.4 µM of 
each tagged PCR primer, 0.25 µl Herculase II fusion DNA polymerase, 2 µl DNA and distilled water. After reviewing 
the PCR protocol from Pornon et al.20 and optimizing the annealing temperatures at 55 °C and 50 °C for trnL and 
ITS1 respectively, the PCR programs were: 2 min denaturation at 95 °C; followed by 25, 30 or 35 cycles (20 s dena-
turation at 95 °C, 20 s annealing at 55 °C (50 °C for ITS1), 30 s elongation at 72 °C) and a final elongation at 72°C 
for 3 min. For ITS1, 3% DMSO was added in the reaction solution to increase Taq polymerase specificity50. PCRs 
were performed in the Thermal Cycler GeneAmp PCR System 9700 (Applied Biosystems) and each PCR product 
was visualized on 1% agarose in TAE 0.5X buffer and quantified on the QuantStudio 6 Flex Real-Time PCR System 
(Applied Biosystems). Two libraries (one for each marker) were generated using 2 µl of each PCR product following 
the manufacturer’s guidelines for the Illumina TruSeq Nano kit, except that no sonication was performed. Libraries 
were sequenced using the MiSeq Illumina technology, 2 × 250 paired-end run for ITS1 and 2 × 75 paired-end run 
for P6-loop of trnL, using the NGS core facility at the Génopole Toulouse Midi-Pyrénées (www.get.genotoul.fr).

Sequence analysis and identification of plant taxa.  We built our own barcoding reference library 
using barcodes from Pornon et al.20 and completed with barcodes of all species belonging to the Chysanthemum 
and Hippeastrum genera obtained from the EMBL database, using the ecoPCR function of the OBITOOL pack-
age54 and following the OBITOOL pipelines (git.metabarcoding.org/obitools/ecopcr/). Sequence treatment 
followed a step-by-step analysis procedure of the OBITOOL protocol. Paired-end reads were assembled using 
the Illumina paired-end utility that aligns the two reads and returns the reconstructed sequences. Sequences of 
low alignment quality (<40%) were discarded. Each sequence was affiliated to its corresponding sample using 
the ngsfilter command and dereplicated into unique sequences using the obiuniq command. As some of these 
sequences may contain PCR and/or sequencing errors, as well as chimeras, they have to be discarded using the 
obigrep command while keeping sequences more than 20 bp long and with a count equal to or greater than 10 
sequences. As a final denoising step, we kept sequences with no variants, with a count greater than 5% of their 
own count (command obiclean). Then, a single taxon was assigned to each sequence using the ecoTag program 
that compared the sequences produced to our taxonomic reference library. When assigning our two target plant 
species, a best match score >95% was allowed for each marker.

Statistical analysis.  To compare the two methods of estimating the number of pollen grains in HIP and 
CHR, we fitted a linear regression model to the number of pollen grains estimated by flow cytometry using 
the number of pollen grains estimated by cytometry as predictive variable. To analyse the relationship between 
the number of pollen grains (estimated by microscopy and by flow cytometry, respectively) and the number of 
sequence counts, we fitted an ANCOVA linear model with the lm function of the R base package55. Independent 
statistical analyses were performed for each combination of markers (ITS1 or trnL) and PCR conditions (25, 30 
or 35 cycles). We tested the fixed effects of the logarithm of the pollen quantity, plant species (HIP and CHR) and 
their interaction on the mean number of sequence reads averaged over the three PCR replicates. Different anal-
yses were performed for either pre-extraction or post-extraction estimates of pollen grain quantities. When the 
interaction between plant species and pollen amount was not significant with respect to sequence abundance, it 
was removed from the model and simple effects of either plant species or pollen quantity were tested (type II sum 
of squares). Normality of the residual distribution was systematically checked and, if necessary, a log transforma-
tion was applied to the response variable.

Data availability
The data that support the findings of this study will be available in a public repository.
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